快速访问
文章信息
参考文献
[1]周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展——大数据与数学地球科学专题代序 [J]. 岩石学报, 2018, 34(2): 9.
[2]EL-OMAIRI M A, EL GAROUANI A. A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data [J]. Heliyon, 2023, 9(9): e20168.
[3]CARRANZA E J M. Geocomputation of mineral exploration targets [J]. Computers & Geosciences, 2011, 37(12): 1907-1916.
[4]XIONG Y, ZUO R, CARRANZA E J M. Mapping mineral prospectivity through big data analytics and a deep learning algorithm [J]. Ore Geology Reviews, 2018, 102: 811-817.
[5]GHEZELBASH R, MAGHSOUDI A, SHAMEKHI M, et al. Genetic algorithm to optimize the SVM and K-means algorithms for mapping of mineral prospectivity [J]. Neural Computing and Applications, 2023, 35(1): 719-733.
[6]王语, 周永章, 肖凡, 等. 基于成矿条件数值模拟和支持向量机算法的深部成矿预测——以粤北凡口铅锌矿为例[J]. 大地构造与成矿学, 2020, 44(2): 222-230.
[7]TAHA A M M, XI Y T, HE Q P, et al. Investigating the Capabilities of Various Multispectral Remote Sensors Data to Map Mineral Prospectivity Based on Random Forest Predictive Model: A Case Study for Gold Deposits in Hamissana Area, NE Sudan [J]. Minerals, 2022, 13(49): 49.
[8]SHIRMARD H, FARAHBAKHSH E, MULLER R D, et al. A review of machine learning in processing remote sensing data for mineral exploration [J]. Remote Sensing of Environment, 2022, 268: 112750.
[9]ELDOSOUKY A M, ABDELKAREEM M, ELKHATEEB S O. Integration of remote sensing and aeromagnetic data for mapping structural features and hydrothermal alteration zones in Wadi Allaqi area, South Eastern Desert of Egypt [J]. Journal of African Earth Sciences, 2017, 130: 28-37.
[10]TESTA F J, VILLANUEVA C, COOKE D R, et al. Lithological and Hydrothermal Alteration Mapping of Epithermal, Porphyry and Tourmaline Breccia Districts in the Argentine Andes Using ASTER Imagery [J]. Remote Sensing, 2018, 10(2): 203.
[11][11] CHEN Q, ZHAO Z, ZHOU J, et al. New Insights into the Pulang Porphyry Copper Deposit in Southwest China: Indication of Alteration Minerals Detected Using ASTER and WorldView-3 Data [J]. Remote Sensing, 2021, 13(14): 2798.
[12]芮宗瑶, 李光明, 张立生, 等. 西藏斑岩铜矿对重大地质事件的响应 [J]. 地学前缘, 2004, 11(1): 145-152.
[13]陈建平, 唐菊兴, 丛源, 等. 藏东玉龙斑岩铜矿地质特征及成矿模型 [J]. 地质学报, 2009, 83(2): 1887-1900.
[14]杜斌, 李高, 王磊, 等. 藏东玉龙斑岩型铜(-钼-金)矿床地质特征及找矿标志 [J]. 矿产勘查, 2022, 13(1): 10.
[15]栗亚芝, 宋忠宝, 杜玉良, 等. 纳日贡玛斑岩型铜钼矿与玉龙斑岩铜矿成矿特征对比研究 [J]. 西北地质, 2012, 45 (1): 149-158.
[16]PORWAL A, CARRANZA E J M. Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration [J]. Ore Geology Reviews, 2015, 71: 477–483.
[17]CHUNG C F, AGTERBERG F P. Regression models for estimating mineral resources from geological map data [J]. Journal of the International Association for Mathematical Geology, 1980, 12(5): 473-488.
[18]HARRIS J R, SANBORN-BARRIE M, PANAGAPKO D A, et al. Gold prospectivity maps of the Red Lake greenstone belt: application of GIS technology [J]. Canadian Journal of Earth Sciences, 2006, 43(7): 865-893.
[19]FORD A, MILLER J M, MOL A G. A Comparative Analysis of Weights of Evidence, Evidential Belief Functions, and Fuzzy Logic for Mineral Potential Mapping Using Incomplete Data at the Scale of Investigation [J]. Natural Resources Research, 2016, 25(1): 19-33.
[20]LISITSIN V A, PORWAL A, MCCUAIG T C. Probabilistic Fuzzy Logic Modeling: Quantifying Uncertainty of Mineral Prospectivity Models Using Monte Carlo Simulations. [J] Mathematical Geosciences, 2014, 46(6): 747-769.
[21]AGTERBERG F P. Combining indicator patterns in weights of evidence modeling for resource evaluation [J]. Natural Resources Research, 1992, 1(1): 39-50.
[22]BROWN W M, GEDEON T D, GROVES D I, et al. Artificial neural networks: A new method for mineral prospectivity mapping [J]. Journal of the Geological Society of Australia, 2000, 47(4): 757-770.
[23]ABEDI M, NOROUZI G H, BAHROUDI A. Support vector machine for multi-classification of mineral prospectivity areas [J]. Computers & Geosciences, 2012, 9: 272-283.
[24]CARRANZA E J M, LABORTE A G. Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines) [J]. Computers & Geosciences, 2015, 74: 60-70.
[25]LIU Y, SUN T, WU K, et al. Tungsten prospectivity mapping using multi-source geo-information and deep forest algorithm [J]. Ore Geology Reviews, 2025, 177: 106452.
[26]AGTERBERG F P. Computer Programs for Mineral Ex-ploration [J]. Science, 1989, 245: 76-81.
[27]BONHAM-CARTER G F. Geographic Information Systemfor Geosciences: Modelling with GIS [M]. Oxford: Pergamon Press, 1994.
[28]薛顺荣, 肖克炎, 丁建华. 基于MRAS的证据权重法在香格里拉地区的综合信息成矿预测 [J]. 吉林大学学报(地球科学版), 2008, 38(5): 738-744.
[29]吕鹏, 朱鹏飞, 毕志伟, 等. 基于GIS和证据权模型的克什克腾旗有色金属成矿预测与评价 [J]. 地质与勘探, 2011, 47(5): 909-917.
[30]孙艳霞, 张达, 王长明, 等. 证据权重法在新矿床类型成矿预测中的应用 [J]. 金属矿山, 2010, (9): 5.
[31]CARRANZA E J M. Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. [J] Computers and Geosciences, 2009, 35(10): 2032-2046.
[32]CARRANZA E J M. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features [J]. Ore Geology Reviews, 2009, 35(3): 383-400.
[33]BROWN W M, TAMÁS D G, GROVES D I. Use of Noise to Augment Training Data: A Neural Network Method of Mineral–Potential Mapping in Regions of Limited Known Deposit Examples [J]. Natural Resources Research, 2003, 12(2): 141-152.
[34]ZHENG C, YUAN F, LUO X, et al. Mineral prospectivity mapping based on Support vector machine and Random Forest algorithm-A case study from Ashele copper-zinc deposit, Xinjiang, NW China [J]. Ore Geology Reviews, 2023, 159: 105567.
[35]RODRIGUEZ-GALIANO V F, CHICA-OLMO M, CHICA-RIVAS M. Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain [J]. International Journal of Geographical Information Science, 2014, 28(7): 1336-1354.
[36]PORWAL A, GONZÁLEZ-ÁLVAREZ I, MARKWITZ V, et al. Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia [J]. Ore Geology Reviews, 2010, 38(3): 184-196.
[37]ZHAO J, SUI Y, ZHANG Z, et al. Application of Logistic Regression and Weights of Evidence Methods for Mapping Volcanic-Type Uranium Prospectivity [J]. Minerals, 2023, 13(5): 13.
[38]OH H J, LEE S. Application of Artificial Neural Network for Gold–Silver Deposits Potential Mapping: A Case Study of Korea [J]. Natural Resources Research, 2010, 19(2): 103-124.
[39]ZUO R, CARRANZA E J M. Support vector machine: A tool for mapping mineral prospectivity [J]. Computers and Geosciences, 2011, 37(12): 1967-1975.
[40]CARRANZA E J M. Data-Driven Evidential Belief Modeling of Mineral Potential Using Few Prospects and Evidence with Missing Values [J]. Natural Resources Research, 2015, 24(3): 291-304.
[41]TAHA A M M, LIU GANG, CHEN Q Y, et al. Toward Data-Driven Mineral Prospectivity Mapping from Remote Sensing Data Using Deep Forest Predictive Model [J]. Natural Resources Research, 2024, 33(6): 2407-2431.
[42]SUN T, CHEN F, ZHONG L X, et al. GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China [J]. Ore Geology Reviews, 2019, 109: 26-49.
[43]SUN T, LI H, WU K, et al. Data-Driven Predictive Modelling of Mineral Prospectivity Using Machine Learning and Deep Learning Methods: A Case Study from Southern Jiangxi Province, China [J]. Minerals, 2020, 10(2): 102.
[44]MAEPA F, SMITH R S, TESSEMA A. Support Vector Machine and Artificial Neural Network Modelling of Orogenic Gold Prospectivity Mapping in the Swayze greenstone belt, Ontario, Canada [J]. Ore Geology Reviews, 2020, 130(2): 103968.
[45]ZHOU K, SUN T, LIU Y, et al. Prospectivity Mapping of Tungsten Mineralization in Southern Jiangxi Province Using Few-Shot Learning [J]. Minerals, 2023, 13(669): 669.
[46]左仁广, 成秋明, 许莹, 等. 可解释性矿产预测人工智能模型 [J]. 中国科学(地球科学), 2024, 54(9): 2917-2928.
[47]ZUO R G, LUO Z J, XIONG, Y H, et al. A Geologically Constrained Variational Autoencoder for Mineral Prospectivity Mapping [J]. Natural Resources Research, 2022, 31(3): 1121-1133.
[48]MOU N N, CARRANZA E J M, WANG G W, et al. A Framework for Data-Driven Mineral Prospectivity Mapping with Interpretable Machine Learning and Modulated Predictive Modeling [J]. Natural Resources Research, 2023, 32(6): 2439-2462.
[49]WANG L Q, YANG J, WU S S, et al. Enhancing mineral prospectivity mapping with geospatial artificial intelligence: A geographically neural network-weighted logistic regression approach [J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 128: 103746.
[50]YU Z B, LI B B, WANG X J. Mineral prospectivity mapping susceptibility evaluation based on interpretable ensemble learning [J]. Ore Geology Reviews, 2024, 173: 106248.
[51]唐淑兰. 基于多尺度分析和机器学习的遥感影像找矿预测及填图方法研究 [D]. 西安: 长安大学, 2021.
[52]朱莉莉. 基于GIS技术的新疆阿勒吞扎瓦提地区金矿资源成矿预测研究 [D]. 长沙: 中南大学, 2013.
[53]CROSTA A P, FILHO C R D S, AZEVEDO F, et al. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis [J]. International Journal of Remote Sensing, 2003, 24(21): 4233-4240.
[54]马建文. 遥感数据自动处理方法与程序设计 [M]. 北京: 科学出版社, 2010.
[55]ROWAN L C, MARS J C, SIMPSON C J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [J]. Remote Sensing of Environment, 2005, 99(1): 105-126.
[56]MOORE F, RASTMANESH F, ASADI H, et al. Mapping mineralogical alteration using principal-component analysis and matched filter processing in the Takab area, north-west Iran, from ASTER data [J]. International Journal of Remote Sensing, 2008, 29(10): 2851-2867.
[57]POPOV, K, BAKARDJIEV D. Identification of hydrothermal alteration areas in The Panagyurishte Ore Region by satellite aster spectral data [J]. Dokladi na Bolgarskata Akademiya na Naukite, 2014, 67(11): 1547-1554.
[58]李楠, 肖克炎, 陈析璆, 等. 基于Hyperion高光谱数据的矿物蚀变提取——以内蒙古西部狼山地区炭窑口矿床为例 [J]. 地质通报, 2010, 29(10): 1558-1563.
[59]ZADEH M H, TANGESTANI M H, ROLDAN F V, et al. Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data [J]. Advances in Space Research, 2014, 53(3): 440-451.
[60]王桂珍, 张立福, 孙雪剑, 等. 基于SREM融合数据的矿物蚀变信息提取 [J]. 地球科学, 2015, 40(8): 1330-1338.
[61]FENG Y L, DAI J J, BAI L Y, et al. Prospecting Prediction for the Yulong Metallogenic Belt in Tibet Based on Remote Sensing Alteration Information and Structural Interpretation [J]. Remote Sensing, 2024, 16(8): 1343.
[62]龚弦, 马源, 何学志, 等. 遥感技术在地质矿产勘查中的应用研究分析 [J]. 中国非金属矿工业导刊, 2022, (6): 69-73.
[63]EL-WAHED M A, ZOHEIR B, POUR A B, et al. Shear-Related Gold Ores in the Wadi Hodein Shear Belt, South Eastern Desert of Egypt: Analysis of Remote Sensing, Field and Structural Data [J]. Multidisciplinary Digital Publishing Institute, 2021, (5): 474.
[64]SHIRMARD H, FARAHBAKHSH, E, HEIDARI E, et al. A Comparative Study of Convolutional Neural Networks and Conventional Machine Learning Models for Lithological Mapping Using Remote Sensing Data [J]. Remote Sensing, 2022, 14(4): 819.
[65]FORSON E D, AMPONSAH P O. Mineral prospectivity mapping over the Gomoa Area of Ghana's southern Kibi-Winneba belt using support vector machine and naive bayes [J]. Journal of African earth sciences, 2023, 206: 105024.
[66]FU Y F, CHENG Q M, JING, L H, et al. Mineral Prospectivity Mapping of Porphyry Copper Deposits Based on Remote Sensing Imagery and Geochemical Data in the Duolong Ore District, Tibet [J]. Remote Sensing, 2023, 15(2): 439.
[67]邓军, 侯增谦, 莫宣学, 等. 三江特提斯复合造山与成矿作用 [J]. 矿床地质, 2010, 27(1): 37-42.
[68]康继祖, 张金明, 付彦文, 等. 青海省纳日贡玛地区斑岩型铜多金属矿成矿规律与成矿预测 [M]. 武汉: 中国地质大学出版社, 2022.
[69]陈秉芳. 青海省杂多县纳日贡玛矿区外围找矿潜力分析 [D]. 北京: 中国地质大学(北京), 2013.
[70]王召林, 杨志明, 杨竹森, 等. 纳日贡玛斑岩钼铜矿床:玉龙铜矿带的北延——来自辉钼矿Re-Os同位素年龄的证据 [J]. 岩石学报, 2008, 24(3): 503-510.
[71]YANG Z M, HOU Z Q, XU J F, et al. Geology and origin of the post-collisional Narigongma porphyry Cu-Mo deposit, southern Qinghai, Tibet [J]. Gondwana Research, 2014, 26(2): 536-556.
[72]南征兵, 唐菊兴, 李葆华. 青海省纳日贡玛斑岩铜钼矿成矿物源分析 [J]. 矿业研究与开发, 2007, (5): 1-3,19.
[73]陈建平, 郝金华. 青海南部三江北段铜多金属成矿系统演化研究 [J]. 西北地质, 2012, 45(1): 236-243.
[74]陈建平, 董庆吉, 郝金华, 等. 基于GIS的证据权重法青海"三江"北段斑岩型钼铜矿产资源成矿预测 [J]. 岩石矿物学杂志, 2011, 30(3): 519-529.
[75]邓会娟, 姚聿涛, 彭光雄, 等.青海纳日贡玛斑岩型Cu-Mo矿床遥感蚀变异常提取与找矿预测 [J]. 国土资源遥感, 2014, 26(2): 154-161.
[76]王富春, 李玉龙, 鲁海峰, 等. 青南纳日贡玛斑岩型铜钼矿床物化探异常特征及找矿模型 [J]. 物探与化探, 2016, 40(6): 1055-1062.
版权与开放获取声明
作为一本开放获取的学术期刊,所有文章均遵循 Creative Commons Attribution 4.0 International License (CC BY 4.0) 协议发布,允许用户在署名原作者的前提下自由共享与再利用内容。所有文章均可免费供读者和机构阅读、下载、引用与传播,EWA Publishing 不会通过期刊的出版发行向读者或机构收取任何费用。